Physics

Physics, chemistry, engineering

Velocity

$$v = \frac{\mathrm{d}r}{\mathrm{d}t}$$

v = \frac{\mathrm{d}r}{\mathrm{d}t}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>v</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mi>r</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></math>
Velocity
Velocity

Acceleration

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2r}{\mathrm{d}t^2}$$

a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2r}{\mathrm{d}t^2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mi>v</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><mi>r</mi></mrow><mrow><mi>d</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
Acceleration
Acceleration

Newton's Second Law of Motion

$$F = ma$$

F = ma
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>F</mi><mo>=</mo><mi>m</mi><mi>a</mi></mrow></math>
Newton's Second Law of Motion
Newton's Second Law of Motion

Universal Graviation

$$F = G \frac{m_1 m_2}{r^2}$$

F = G \frac{m_1 m_2}{r^2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>F</mi><mo>=</mo><mi>G</mi><mfrac><mrow><msub><mi>m</mi><mn>1</mn></msub><msub><mi>m</mi><mn>2</mn></msub></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
Universal Graviation
Universal Graviation

Escape Velocity

$$v_e = \sqrt{\frac{2GM}{r}}$$

v_e = \sqrt{\frac{2GM}{r}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>v</mi><mi>e</mi></msub><mo>=</mo><msqrt><mrow><mfrac><mrow><mn>2</mn><mi>G</mi><mi>M</mi></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></msqrt></mrow></math>
Escape Velocity
Escape Velocity

Kinetic Energy

$$E = \frac{1}{2} mv^2$$

E = \frac{1}{2} mv^2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>E</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow></math>
Kinetic Energy
Kinetic Energy

Work

$$W = F \Delta r$$

W = F \Delta r
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>W</mi><mo>=</mo><mi>F</mi><mi>Δ</mi><mi>r</mi></mrow></math>
Work
Work

Work (general)

$$W = \int_C F(r) \cdot \mathrm{d}r$$

W = \int_C F(r) \cdot \mathrm{d}r
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>W</mi><mo>=</mo><msub><mo>∫</mo><mi>C</mi></msub><mi>F</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mi>·</mi><mi>d</mi><mi>r</mi></mrow></math>
Work (general)
Work (general)

Momentum

$$p = mv$$

p = mv
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>p</mi><mo>=</mo><mi>m</mi><mi>v</mi></mrow></math>
Momentum
Momentum

Momentum (special relativity)

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mi>m</mi><mi>v</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><msup><mi>v</mi><mn>2</mn></msup></mrow><mrow><msup><mi>c</mi><mn>2</mn></msup></mrow></mfrac></mrow></msqrt></mrow></mfrac></mrow></math>
Momentum (special relativity)
Momentum (special relativity)

Density

$$\rho = \frac{m}{V}$$

\rho = \frac{m}{V}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>ρ</mi><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>V</mi></mrow></mfrac></mrow></math>
Density
Density

Pressure

$$p=\frac{F}{A}$$

p=\frac{F}{A}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mi>F</mi></mrow><mrow><mi>A</mi></mrow></mfrac></mrow></math>
Pressure
Pressure

Moment of Inertia

$$I = \frac{L}{\omega}$$

I = \frac{L}{\omega}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>I</mi><mo>=</mo><mfrac><mrow><mi>L</mi></mrow><mrow><mi>ω</mi></mrow></mfrac></mrow></math>
Moment of Inertia
Moment of Inertia

Torque

$$\tau = rF\sin\theta$$

\tau = rF\sin\theta
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>τ</mi><mo>=</mo><mi>r</mi><mi>F</mi><mi>sin</mi><mi>θ</mi></mrow></math>
Torque
Torque

Centripetal Force

$$F_c = \frac{mv^2}{r}$$

F_c = \frac{mv^2}{r}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>F</mi><mi>c</mi></msub><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></math>
Centripetal Force
Centripetal Force

Period of Pendulum

$$T = 2\pi\sqrt{\frac{L}{g}}$$

T = 2\pi\sqrt{\frac{L}{g}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>T</mi><mo>=</mo><mn>2</mn><mi>π</mi><msqrt><mrow><mfrac><mrow><mi>L</mi></mrow><mrow><mi>g</mi></mrow></mfrac></mrow></msqrt></mrow></math>
Period of Pendulum
Period of Pendulum

Period of Mass-Spring System

$$T = 2\pi\sqrt{\frac{m}{k}}$$

T = 2\pi\sqrt{\frac{m}{k}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>T</mi><mo>=</mo><mn>2</mn><mi>π</mi><msqrt><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msqrt></mrow></math>
Period of Mass-Spring System
Period of Mass-Spring System

Energy in a Mass-Spring System

$$E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2$$

E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>E</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>k</mi><msup><mi>A</mi><mn>2</mn></msup></mrow></math>
Energy in a Mass-Spring System
Energy in a Mass-Spring System

Velocity of Mass-Spring System

$$v = \pm \sqrt{\frac{k}{m}(A^2 - x^2)}$$

v = \pm \sqrt{\frac{k}{m}(A^2 - x^2)}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>v</mi><mo>=</mo><mi>±</mi><msqrt><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mi>m</mi></mrow></mfrac><mo stretchy="false">(</mo><msup><mi>A</mi><mn>2</mn></msup><mo>−</mo><msup><mi>x</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></msqrt></mrow></math>
Velocity of Mass-Spring System
Velocity of Mass-Spring System

Hooke's Law (Spring Equation)

$$F = kx$$

F = kx
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>F</mi><mo>=</mo><mi>k</mi><mi>x</mi></mrow></math>
Hooke's Law (Spring Equation)
Hooke's Law (Spring Equation)

Fick's first law of diffusion

$$J = -D\frac{d\varphi}{dx}$$

J = -D\frac{d\varphi}{dx}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>J</mi><mo>=</mo><mo>−</mo><mi>D</mi><mfrac><mrow><mi>d</mi><mi>φ</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow></math>
Fick's first law of diffusion
Fick's first law of diffusion

Fick's second law of diffusion

$$\frac{\partial\varphi}{\partial t} = D\frac{\partial^2\varphi}{\partial x^2}$$

\frac{\partial\varphi}{\partial t} = D\frac{\partial^2\varphi}{\partial x^2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mfrac><mrow><mo>∂</mo><mi>φ</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>D</mi><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>φ</mi></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
Fick's second law of diffusion
Fick's second law of diffusion

Diffusion Equation

$$\frac{\partial \phi(r, t)}{\partial t} = \nabla \cdot [D(\phi,r) \, \nabla \phi(r, t)]$$

\frac{\partial \phi(r, t)}{\partial t} = \nabla \cdot [D(\phi,r) \, \nabla \phi(r, t)]
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mfrac><mrow><mo>∂</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>∇</mo><mi>·</mi><mo stretchy="false">[</mo><mi>D</mi><mo stretchy="false">(</mo><mi>ϕ</mi><mo>,</mo><mi>r</mi><mo stretchy="false">)</mo><mspace width="0.167em" /><mo>∇</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></math>
Diffusion Equation
Diffusion Equation

Heat Equation

$$\frac{\partial u}{\partial t} = \Delta u$$

\frac{\partial u}{\partial t} = \Delta u
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>Δ</mi><mi>u</mi></mrow></math>
Heat Equation
Heat Equation

Thermal Conduction

$$q = -k \nabla T$$

q = -k \nabla T
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>q</mi><mo>=</mo><mo>−</mo><mi>k</mi><mo>∇</mo><mi>T</mi></mrow></math>
Thermal Conduction
Thermal Conduction

Ideal Gas Law

$$PV = nRT$$

PV = nRT
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>P</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></mrow></math>
Ideal Gas Law
Ideal Gas Law

Boyle's Law

$$P \propto \frac{1}{V}$$

P \propto \frac{1}{V}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>P</mi><mo>∝</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>V</mi></mrow></mfrac></mrow></math>
Boyle's Law
Boyle's Law

Charles's Law

$$V \propto T$$

V \propto T
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>V</mi><mo>∝</mo><mi>T</mi></mrow></math>
Charles's Law
Charles's Law

Avogadro's Law

$$V \propto n$$

V \propto n
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>V</mi><mo>∝</mo><mi>n</mi></mrow></math>
Avogadro's Law
Avogadro's Law

Molar Mass of a Gas

$$M = \frac{RT\rho}{p}$$

M = \frac{RT\rho}{p}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>M</mi><mo>=</mo><mfrac><mrow><mi>R</mi><mi>T</mi><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></math>
Molar Mass of a Gas
Molar Mass of a Gas

Navier-Stokes Equation

$$\rho \cdot \left( \frac{\partial \vec{\mathbf{v}}}{\partial t} + \vec{\mathbf{v}} \cdot \nabla \vec{\mathbf{v}} \right) = \rho \vec{\mathbf{g}} - \nabla p + \mu \cdot \nabla^2 \vec{\mathbf{v}}$$

\rho \cdot \left( \frac{\partial \vec{\mathbf{v}}}{\partial t} + \vec{\mathbf{v}} \cdot \nabla \vec{\mathbf{v}} \right) = \rho \vec{\mathbf{g}} - \nabla p + \mu \cdot \nabla^2 \vec{\mathbf{v}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>ρ</mi><mi>·</mi><mrow><mo stretchy="true" fence="true" form="prefix">(</mo><mfrac><mrow><mo>∂</mo><mover><mrow><mi>𝐯</mi></mrow><mo stretchy="true">→</mo></mover></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mover><mrow><mi>𝐯</mi></mrow><mo stretchy="true">→</mo></mover><mi>·</mi><mo>∇</mo><mover><mrow><mi>𝐯</mi></mrow><mo stretchy="true">→</mo></mover><mo stretchy="true" fence="true" form="postfix">)</mo></mrow><mo>=</mo><mi>ρ</mi><mover><mrow><mi>𝐠</mi></mrow><mo stretchy="true">→</mo></mover><mo>−</mo><mo>∇</mo><mi>p</mi><mo>+</mo><mi>μ</mi><mi>·</mi><msup><mo>∇</mo><mn>2</mn></msup><mover><mrow><mi>𝐯</mi></mrow><mo stretchy="true">→</mo></mover></mrow></math>
Navier-Stokes Equation
Navier-Stokes Equation

Bernoulli's Principle

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>P</mi><mn>1</mn></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>ρ</mi><msubsup><mi>v</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><mi>ρ</mi><mi>g</mi><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><msub><mi>P</mi><mn>2</mn></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>ρ</mi><msubsup><mi>v</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><mi>ρ</mi><mi>g</mi><msub><mi>h</mi><mn>2</mn></msub></mrow></math>
Bernoulli's Principle
Bernoulli's Principle

Van der Waals Equation

$$(P + \frac{an^2}{V^2})(V - nb) = nRT$$

(P + \frac{an^2}{V^2})(V - nb) = nRT
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>+</mo><mfrac><mrow><mi>a</mi><msup><mi>n</mi><mn>2</mn></msup></mrow><mrow><msup><mi>V</mi><mn>2</mn></msup></mrow></mfrac><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>V</mi><mo>−</mo><mi>n</mi><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></mrow></math>
Van der Waals Equation
Van der Waals Equation

Dalton's Law

$$p_{total} = \sum_{i=1}^n p_i = p_1 + p_2 + p_3 + \cdots + p_n$$

p_{total} = \sum_{i=1}^n p_i = p_1 + p_2 + p_3 + \cdots + p_n
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>p</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi></mrow></msub><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>p</mi><mi>i</mi></msub><mo>=</mo><msub><mi>p</mi><mn>1</mn></msub><mo>+</mo><msub><mi>p</mi><mn>2</mn></msub><mo>+</mo><msub><mi>p</mi><mn>3</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>p</mi><mi>n</mi></msub></mrow></math>
Dalton's Law
Dalton's Law

Amagat's Law

$$V_{mix} = \sum_{i=1}^k V_i = V_1 + V_2 + V_3 + \cdots + V_n$$

V_{mix} = \sum_{i=1}^k V_i = V_1 + V_2 + V_3 + \cdots + V_n
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>V</mi><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><msub><mi>V</mi><mn>1</mn></msub><mo>+</mo><msub><mi>V</mi><mn>2</mn></msub><mo>+</mo><msub><mi>V</mi><mn>3</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>V</mi><mi>n</mi></msub></mrow></math>
Amagat's Law
Amagat's Law

First Law of Thermodynamics

$$\Delta U = Q - W$$

\Delta U = Q - W
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>Δ</mi><mi>U</mi><mo>=</mo><mi>Q</mi><mo>−</mo><mi>W</mi></mrow></math>
First Law of Thermodynamics
First Law of Thermodynamics

pH of a Solution

$$\mathrm{pH} = -\log [H^+]$$

\mathrm{pH} = -\log [H^+]
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mrow><mi mathvariant="normal">p</mi><mi mathvariant="normal">H</mi></mrow><mo>=</mo><mo>−</mo><mi>log</mi><mo stretchy="false">[</mo><msup><mi>H</mi><mo>+</mo></msup><mo stretchy="false">]</mo></mrow></math>
pH of a Solution
pH of a Solution

Nernst Equation

$$E = E^0 - \frac{RT}{zF}\ln{Q}$$

E = E^0 - \frac{RT}{zF}\ln{Q}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>E</mi><mo>=</mo><msup><mi>E</mi><mn>0</mn></msup><mo>−</mo><mfrac><mrow><mi>R</mi><mi>T</mi></mrow><mrow><mi>z</mi><mi>F</mi></mrow></mfrac><mi>ln</mi><mrow><mi>Q</mi></mrow></mrow></math>
Nernst Equation
Nernst Equation

Law of Mass Action

$$K = \frac{[A']^{\alpha '}[B']^{\beta '} \cdots}{[A]^\alpha [B]^\beta \cdots}$$

K = \frac{[A']^{\alpha '}[B']^{\beta '} \cdots}{[A]^\alpha [B]^\beta \cdots}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>K</mi><mo>=</mo><mfrac><mrow><mo stretchy="false">[</mo><msup><mi>A</mi><mi>′</mi></msup><msup><mo stretchy="false">]</mo><mrow><msup><mi>α</mi><mi>′</mi></msup></mrow></msup><mo stretchy="false">[</mo><msup><mi>B</mi><mi>′</mi></msup><msup><mo stretchy="false">]</mo><mrow><msup><mi>β</mi><mi>′</mi></msup></mrow></msup><mo>⋯</mo></mrow><mrow><mo stretchy="false">[</mo><mi>A</mi><msup><mo stretchy="false">]</mo><mi>α</mi></msup><mo stretchy="false">[</mo><mi>B</mi><msup><mo stretchy="false">]</mo><mi>β</mi></msup><mo>⋯</mo></mrow></mfrac></mrow></math>
Law of Mass Action
Law of Mass Action

Arrhenius Equation

$$k = Ae^{-\frac{E_a}{RT}}$$

k = Ae^{-\frac{E_a}{RT}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>k</mi><mo>=</mo><mi>A</mi><msup><mi>e</mi><mrow><mo>−</mo><mfrac><mrow><msub><mi>E</mi><mi>a</mi></msub></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mrow></msup></mrow></math>
Arrhenius Equation
Arrhenius Equation

Raoult's Law

$$p_i = p_i^\star x_i$$

p_i = p_i^\star x_i
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>p</mi><mi>i</mi></msub><mo>=</mo><msubsup><mi>p</mi><mi>i</mi><mo>⋆</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub></mrow></math>
Raoult's Law
Raoult's Law

Köhler Equation

$$\ln\left(\frac{p_w(D_p)}{p^0}\right) = \frac{4M_w \sigma_w}{RT\rho_w D_p} - \frac{6n_s M_w}{\pi\rho D_p^3}$$

\ln\left(\frac{p_w(D_p)}{p^0}\right) = \frac{4M_w \sigma_w}{RT\rho_w D_p} - \frac{6n_s M_w}{\pi\rho D_p^3}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>ln</mi><mrow><mo stretchy="true" fence="true" form="prefix">(</mo><mfrac><mrow><msub><mi>p</mi><mi>w</mi></msub><mo stretchy="false">(</mo><msub><mi>D</mi><mi>p</mi></msub><mo stretchy="false">)</mo></mrow><mrow><msup><mi>p</mi><mn>0</mn></msup></mrow></mfrac><mo stretchy="true" fence="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mn>4</mn><msub><mi>M</mi><mi>w</mi></msub><msub><mi>σ</mi><mi>w</mi></msub></mrow><mrow><mi>R</mi><mi>T</mi><msub><mi>ρ</mi><mi>w</mi></msub><msub><mi>D</mi><mi>p</mi></msub></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>6</mn><msub><mi>n</mi><mi>s</mi></msub><msub><mi>M</mi><mi>w</mi></msub></mrow><mrow><mi>π</mi><mi>ρ</mi><msubsup><mi>D</mi><mi>p</mi><mn>3</mn></msubsup></mrow></mfrac></mrow></math>
Köhler Equation
Köhler Equation

Kelvin Equation

$$p(r_1,r_2) = P - \frac{\gamma \rho_{\mathrm{vapor}}}{\rho_{\mathrm{liquid}} - \rho_{\mathrm{vapor}}} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

p(r_1,r_2) = P - \frac{\gamma \rho_{\mathrm{vapor}}}{\rho_{\mathrm{liquid}} - \rho_{\mathrm{vapor}}} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>r</mi><mn>1</mn></msub><mo>,</mo><msub><mi>r</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo>−</mo><mfrac><mrow><mi>γ</mi><msub><mi>ρ</mi><mrow><mrow><mi mathvariant="normal">v</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">r</mi></mrow></mrow></msub></mrow><mrow><msub><mi>ρ</mi><mrow><mrow><mi mathvariant="normal">l</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">q</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">d</mi></mrow></mrow></msub><mo>−</mo><msub><mi>ρ</mi><mrow><mrow><mi mathvariant="normal">v</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">r</mi></mrow></mrow></msub></mrow></mfrac><mrow><mo stretchy="true" fence="true" form="prefix">(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mi>r</mi><mn>1</mn></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mi>r</mi><mn>2</mn></msub></mrow></mfrac><mo stretchy="true" fence="true" form="postfix">)</mo></mrow></mrow></math>
Kelvin Equation
Kelvin Equation

Ostwald-Freundlich Equation

$$\ln{\frac{p}{p_{sat}}} = \frac{2\gamma V_m}{rRT}$$

\ln{\frac{p}{p_{sat}}} = \frac{2\gamma V_m}{rRT}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>ln</mi><mrow><mfrac><mrow><mi>p</mi></mrow><mrow><msub><mi>p</mi><mrow><mi>s</mi><mi>a</mi><mi>t</mi></mrow></msub></mrow></mfrac></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mi>γ</mi><msub><mi>V</mi><mi>m</mi></msub></mrow><mrow><mi>r</mi><mi>R</mi><mi>T</mi></mrow></mfrac></mrow></math>
Ostwald-Freundlich Equation
Ostwald-Freundlich Equation

Standing Wave Equation

$$y(x, y) = A_n \cos(\omega_n t + \delta_n) \sin(k_n x)$$

y(x, y) = A_n \cos(\omega_n t + \delta_n) \sin(k_n x)
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>A</mi><mi>n</mi></msub><mi>cos</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>n</mi></msub><mi>t</mi><mo>+</mo><msub><mi>δ</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mi>sin</mi><mo stretchy="false">(</mo><msub><mi>k</mi><mi>n</mi></msub><mi>x</mi><mo stretchy="false">)</mo></mrow></math>
Standing Wave Equation
Standing Wave Equation

Stefan-Boltzmann Law

$$j^\star = \sigma T^4$$

j^\star = \sigma T^4
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msup><mi>j</mi><mo>⋆</mo></msup><mo>=</mo><mi>σ</mi><msup><mi>T</mi><mn>4</mn></msup></mrow></math>
Stefan-Boltzmann Law
Stefan-Boltzmann Law

Stefan-Boltzmann Constant

$$\sigma = \frac{2\pi^5 k^4}{15 c^2 h^3}$$

\sigma = \frac{2\pi^5 k^4}{15 c^2 h^3}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>σ</mi><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>π</mi><mn>5</mn></msup><msup><mi>k</mi><mn>4</mn></msup></mrow><mrow><mn>15</mn><msup><mi>c</mi><mn>2</mn></msup><msup><mi>h</mi><mn>3</mn></msup></mrow></mfrac></mrow></math>
Stefan-Boltzmann Constant
Stefan-Boltzmann Constant

Tsiolkovsky Rocket Equation

$$\Delta v = v_e \ln{\frac{m_0}{m_f}} = I_{sp} g_0 \ln{\frac{m_0}{m_f}}$$

\Delta v = v_e \ln{\frac{m_0}{m_f}} = I_{sp} g_0 \ln{\frac{m_0}{m_f}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>Δ</mi><mi>v</mi><mo>=</mo><msub><mi>v</mi><mi>e</mi></msub><mi>ln</mi><mrow><mfrac><mrow><msub><mi>m</mi><mn>0</mn></msub></mrow><mrow><msub><mi>m</mi><mi>f</mi></msub></mrow></mfrac></mrow><mo>=</mo><msub><mi>I</mi><mrow><mi>s</mi><mi>p</mi></mrow></msub><msub><mi>g</mi><mn>0</mn></msub><mi>ln</mi><mrow><mfrac><mrow><msub><mi>m</mi><mn>0</mn></msub></mrow><mrow><msub><mi>m</mi><mi>f</mi></msub></mrow></mfrac></mrow></mrow></math>
Tsiolkovsky Rocket Equation
Tsiolkovsky Rocket Equation

Methane Combustion

$$\mathrm{1 CH_4 + O_2 \to CO_2 + H_2O}$$

\mathrm{1 CH_4 + O_2 \to CO_2 + H_2O}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mrow><mn>1</mn><mi mathvariant="normal">C</mi><msub><mi mathvariant="normal">H</mi><mn>4</mn></msub><mo>+</mo><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo>→</mo><mi mathvariant="normal">C</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></mrow></math>
Methane Combustion
Methane Combustion

Photosynthesis

$$\mathrm{6CO_2 + 6H_2O \to C_6 H_{12} O_6 + 6O_2}$$

\mathrm{6CO_2 + 6H_2O \to C_6 H_{12} O_6 + 6O_2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mrow><mn>6</mn><mi mathvariant="normal">C</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo>+</mo><mn>6</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo>→</mo><msub><mi mathvariant="normal">C</mi><mn>6</mn></msub><msub><mi mathvariant="normal">H</mi><mrow><mn>12</mn></mrow></msub><msub><mi mathvariant="normal">O</mi><mn>6</mn></msub><mo>+</mo><mn>6</mn><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></mrow></math>
Photosynthesis
Photosynthesis

Speed of Sound

$$v = \sqrt{\frac{K_s}{\rho}}$$

v = \sqrt{\frac{K_s}{\rho}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>v</mi><mo>=</mo><msqrt><mrow><mfrac><mrow><msub><mi>K</mi><mi>s</mi></msub></mrow><mrow><mi>ρ</mi></mrow></mfrac></mrow></msqrt></mrow></math>
Speed of Sound
Speed of Sound

Doppler Effect

$$f_o = \frac{v + v_o}{v + v_s} f_s$$

f_o = \frac{v + v_o}{v + v_s} f_s
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>f</mi><mi>o</mi></msub><mo>=</mo><mfrac><mrow><mi>v</mi><mo>+</mo><msub><mi>v</mi><mi>o</mi></msub></mrow><mrow><mi>v</mi><mo>+</mo><msub><mi>v</mi><mi>s</mi></msub></mrow></mfrac><msub><mi>f</mi><mi>s</mi></msub></mrow></math>
Doppler Effect
Doppler Effect

Hagen-Poiseuille Equation

$$\delta p = \frac{8 \mu L Q}{\pi R^4}$$

\delta p = \frac{8 \mu L Q}{\pi R^4}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>δ</mi><mi>p</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mi>μ</mi><mi>L</mi><mi>Q</mi></mrow><mrow><mi>π</mi><msup><mi>R</mi><mn>4</mn></msup></mrow></mfrac></mrow></math>
Hagen-Poiseuille Equation
Hagen-Poiseuille Equation

Continuity Equation

$$A_1 v_1 = A_2 v_2$$

A_1 v_1 = A_2 v_2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>A</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>=</mo><msub><mi>A</mi><mn>2</mn></msub><msub><mi>v</mi><mn>2</mn></msub></mrow></math>
Continuity Equation
Continuity Equation

Viscosity

$$\eta = \frac{FL}{vA}$$

\eta = \frac{FL}{vA}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>η</mi><mo>=</mo><mfrac><mrow><mi>F</mi><mi>L</mi></mrow><mrow><mi>v</mi><mi>A</mi></mrow></mfrac></mrow></math>
Viscosity
Viscosity

Kirchoff's Current Law

$$\sum_{k=1}^n I_k = 0$$

\sum_{k=1}^n I_k = 0
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>I</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn></mrow></math>
Kirchoff's Current Law
Kirchoff's Current Law

Kirchoff's Voltage Law

$$\sum_{k=1}^n V_k = 0$$

\sum_{k=1}^n V_k = 0
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>V</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn></mrow></math>
Kirchoff's Voltage Law
Kirchoff's Voltage Law

Gauss's Law

$$\nabla \cdot E = \rho_v/\epsilon$$

\nabla \cdot E = \rho_v/\epsilon
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo>∇</mo><mi>·</mi><mi>E</mi><mo>=</mo><msub><mi>ρ</mi><mi>v</mi></msub><mo>/</mo><mi>ϵ</mi></mrow></math>
Gauss's Law
Gauss's Law

Gauss's Magnetism Law

$$\nabla \cdot B = 0$$

\nabla \cdot B = 0
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo>∇</mo><mi>·</mi><mi>B</mi><mo>=</mo><mn>0</mn></mrow></math>
Gauss's Magnetism Law
Gauss's Magnetism Law

Faraday's Law

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

\nabla \times E = -\frac{\partial B}{\partial t}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo>∇</mo><mi>×</mi><mi>E</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mo>∂</mo><mi>B</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac></mrow></math>
Faraday's Law
Faraday's Law

Ampere's Law

$$\nabla \times B = \mu_0 J + \mu_0\epsilon_0 \frac{\partial E}{\partial t}$$

\nabla \times B = \mu_0 J + \mu_0\epsilon_0 \frac{\partial E}{\partial t}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo>∇</mo><mi>×</mi><mi>B</mi><mo>=</mo><msub><mi>μ</mi><mn>0</mn></msub><mi>J</mi><mo>+</mo><msub><mi>μ</mi><mn>0</mn></msub><msub><mi>ϵ</mi><mn>0</mn></msub><mfrac><mrow><mo>∂</mo><mi>E</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac></mrow></math>
Ampere's Law
Ampere's Law

Gauss's Law (Integral Form)

$$\oiint_S E \cdot dA = \frac{Q}{\epsilon_0}$$

\oiint_S E \cdot dA = \frac{Q}{\epsilon_0}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mo>∯</mo><mi>S</mi></msub><mi>E</mi><mi>·</mi><mi>d</mi><mi>A</mi><mo>=</mo><mfrac><mrow><mi>Q</mi></mrow><mrow><msub><mi>ϵ</mi><mn>0</mn></msub></mrow></mfrac></mrow></math>
Gauss's Law (Integral Form)
Gauss's Law (Integral Form)

Gauss's Magnetism Law (Integral Form)

$$\oiint_S B \cdot dS = 0$$

\oiint_S B \cdot dS = 0
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mo>∯</mo><mi>S</mi></msub><mi>B</mi><mi>·</mi><mi>d</mi><mi>S</mi><mo>=</mo><mn>0</mn></mrow></math>
Gauss's Magnetism Law (Integral Form)
Gauss's Magnetism Law (Integral Form)

Faraday's Law (Integral Form)

$$\oint_{\partial S} E \cdot dl = -\int_S \frac{\partial B}{\partial t} \cdot dA$$

\oint_{\partial S} E \cdot dl = -\int_S \frac{\partial B}{\partial t} \cdot dA
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mo>∮</mo><mrow><mo>∂</mo><mi>S</mi></mrow></msub><mi>E</mi><mi>·</mi><mi>d</mi><mi>l</mi><mo>=</mo><mo>−</mo><msub><mo>∫</mo><mi>S</mi></msub><mfrac><mrow><mo>∂</mo><mi>B</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mi>·</mi><mi>d</mi><mi>A</mi></mrow></math>
Faraday's Law (Integral Form)
Faraday's Law (Integral Form)

Ampere's Law (Integral Form)

$$\oint_C B \cdot dl = \iint_S \left(\mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}\right) \cdot dS$$

\oint_C B \cdot dl = \iint_S \left(\mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}\right) \cdot dS
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mo>∮</mo><mi>C</mi></msub><mi>B</mi><mi>·</mi><mi>d</mi><mi>l</mi><mo>=</mo><msub><mo>∬</mo><mi>S</mi></msub><mrow><mo stretchy="true" fence="true" form="prefix">(</mo><msub><mi>μ</mi><mn>0</mn></msub><mi>J</mi><mo>+</mo><msub><mi>μ</mi><mn>0</mn></msub><msub><mi>ϵ</mi><mn>0</mn></msub><mfrac><mrow><mo>∂</mo><mi>E</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo stretchy="true" fence="true" form="postfix">)</mo></mrow><mi>·</mi><mi>d</mi><mi>S</mi></mrow></math>
Ampere's Law (Integral Form)
Ampere's Law (Integral Form)

Coulomb's Law

$$|F| = K\frac{|q_1 q_2|}{r^2}$$

|F| = K\frac{|q_1 q_2|}{r^2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo stretchy="false">|</mo><mi>F</mi><mo stretchy="false">|</mo><mo>=</mo><mi>K</mi><mfrac><mrow><mo stretchy="false">|</mo><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub><mo stretchy="false">|</mo></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
Coulomb's Law
Coulomb's Law

Lorentz Force

$$F = qE + qv \times B$$

F = qE + qv \times B
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>F</mi><mo>=</mo><mi>q</mi><mi>E</mi><mo>+</mo><mi>q</mi><mi>v</mi><mi>×</mi><mi>B</mi></mrow></math>
Lorentz Force
Lorentz Force

Current

$$I = \frac{\Delta q}{\Delta t}$$

I = \frac{\Delta q}{\Delta t}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>I</mi><mo>=</mo><mfrac><mrow><mi>Δ</mi><mi>q</mi></mrow><mrow><mi>Δ</mi><mi>t</mi></mrow></mfrac></mrow></math>
Current
Current

Resistance

$$R = \frac{\rho L}{A}$$

R = \frac{\rho L}{A}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>R</mi><mo>=</mo><mfrac><mrow><mi>ρ</mi><mi>L</mi></mrow><mrow><mi>A</mi></mrow></mfrac></mrow></math>
Resistance
Resistance

Conductivity

$$\sigma = \frac{1}{\rho}$$

\sigma = \frac{1}{\rho}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>σ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ρ</mi></mrow></mfrac></mrow></math>
Conductivity
Conductivity

Ohm's Law

$$V = IR$$

V = IR
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>V</mi><mo>=</mo><mi>I</mi><mi>R</mi></mrow></math>
Ohm's Law
Ohm's Law

Power

$$P = VI = \frac{V^2}{R} = I^2 R$$

P = VI = \frac{V^2}{R} = I^2 R
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>P</mi><mo>=</mo><mi>V</mi><mi>I</mi><mo>=</mo><mfrac><mrow><msup><mi>V</mi><mn>2</mn></msup></mrow><mrow><mi>R</mi></mrow></mfrac><mo>=</mo><msup><mi>I</mi><mn>2</mn></msup><mi>R</mi></mrow></math>
Power
Power

Series Resistors

$$R = \sum_{i=1}^n R_i$$

R = \sum_{i=1}^n R_i
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>R</mi><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>R</mi><mi>i</mi></msub></mrow></math>
Series Resistors
Series Resistors

Parallel Resistors

$$\frac{1}{R} = \sum_{i=1}^n \frac{1}{R_i}$$

\frac{1}{R} = \sum_{i=1}^n \frac{1}{R_i}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>R</mi></mrow></mfrac><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mi>R</mi><mi>i</mi></msub></mrow></mfrac></mrow></math>
Parallel Resistors
Parallel Resistors

Capacitance Charge

$$C = \frac{Q}{V}$$

C = \frac{Q}{V}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>C</mi><mo>=</mo><mfrac><mrow><mi>Q</mi></mrow><mrow><mi>V</mi></mrow></mfrac></mrow></math>
Capacitance Charge
Capacitance Charge

Parallel Plate Capacitor

$$C = \frac{\epsilon A}{d}$$

C = \frac{\epsilon A}{d}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>C</mi><mo>=</mo><mfrac><mrow><mi>ϵ</mi><mi>A</mi></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></math>
Parallel Plate Capacitor
Parallel Plate Capacitor

Capacitor Voltage

$$v = \frac{1}{C} \int_0^T i \mathrm{d}t + v_0$$

v = \frac{1}{C} \int_0^T i \mathrm{d}t + v_0
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>v</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>C</mi></mrow></mfrac><msubsup><mo>∫</mo><mn>0</mn><mi>T</mi></msubsup><mi>i</mi><mi>d</mi><mi>t</mi><mo>+</mo><msub><mi>v</mi><mn>0</mn></msub></mrow></math>
Capacitor Voltage
Capacitor Voltage

Capacitor Current

$$i = C \frac{\mathrm{d}v}{\mathrm{d}t}$$

i = C \frac{\mathrm{d}v}{\mathrm{d}t}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>i</mi><mo>=</mo><mi>C</mi><mfrac><mrow><mi>d</mi><mi>v</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></math>
Capacitor Current
Capacitor Current

Capacitor Stored Energy

$$W = \frac{1}{2}C V^2$$

W = \frac{1}{2}C V^2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>W</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>C</mi><msup><mi>V</mi><mn>2</mn></msup></mrow></math>
Capacitor Stored Energy
Capacitor Stored Energy

Inductor Voltage

$$v = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

v = L \frac{\mathrm{d}i}{\mathrm{d}t}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>v</mi><mo>=</mo><mi>L</mi><mfrac><mrow><mi>d</mi><mi>i</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></math>
Inductor Voltage
Inductor Voltage

Inductor Current

$$v = \frac{1}{L} \int_0^T v \mathrm{d}t + i_0$$

v = \frac{1}{L} \int_0^T v \mathrm{d}t + i_0
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>v</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>L</mi></mrow></mfrac><msubsup><mo>∫</mo><mn>0</mn><mi>T</mi></msubsup><mi>v</mi><mi>d</mi><mi>t</mi><mo>+</mo><msub><mi>i</mi><mn>0</mn></msub></mrow></math>
Inductor Current
Inductor Current

Inductor Stored Energy

$$W = \frac{1}{2}L I_0^2$$

W = \frac{1}{2}L I_0^2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>W</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>L</mi><msubsup><mi>I</mi><mn>0</mn><mn>2</mn></msubsup></mrow></math>
Inductor Stored Energy
Inductor Stored Energy

Shockley Diode Equation

$$I = I_s \left( e^{\frac{V_D}{nV_T}} - 1\right)$$

I = I_s \left( e^{\frac{V_D}{nV_T}} - 1\right)
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>I</mi><mo>=</mo><msub><mi>I</mi><mi>s</mi></msub><mrow><mo stretchy="true" fence="true" form="prefix">(</mo><msup><mi>e</mi><mrow><mfrac><mrow><msub><mi>V</mi><mi>D</mi></msub></mrow><mrow><mi>n</mi><msub><mi>V</mi><mi>T</mi></msub></mrow></mfrac></mrow></msup><mo>−</mo><mn>1</mn><mo stretchy="true" fence="true" form="postfix">)</mo></mrow></mrow></math>
Shockley Diode Equation
Shockley Diode Equation

Fermi-Dirac Distribution

$$n_i = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} + 1}$$

n_i = \frac{1}{e^{(\epsilon_i - \mu)/k_B T} + 1}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>n</mi><mi>i</mi></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mi>e</mi><mrow><mo stretchy="false">(</mo><msub><mi>ϵ</mi><mi>i</mi></msub><mo>−</mo><mi>μ</mi><mo stretchy="false">)</mo><mo>/</mo><msub><mi>k</mi><mi>B</mi></msub><mi>T</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></math>
Fermi-Dirac Distribution
Fermi-Dirac Distribution

Frequency and Period

$$f = \frac{1}{T}$$

f = \frac{1}{T}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>f</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></math>
Frequency and Period
Frequency and Period

Wavelength

$$\lambda = \frac{v}{f}$$

\lambda = \frac{v}{f}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>v</mi></mrow><mrow><mi>f</mi></mrow></mfrac></mrow></math>
Wavelength
Wavelength

Photon Energy

$$E = h\nu$$

E = h\nu
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>E</mi><mo>=</mo><mi>h</mi><mi>ν</mi></mrow></math>
Photon Energy
Photon Energy

Wave Equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
Wave Equation
Wave Equation

General Relativity

$$G_{\alpha \beta} = \frac{8\pi G}{c^4} T_{\alpha\beta}$$

G_{\alpha \beta} = \frac{8\pi G}{c^4} T_{\alpha\beta}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>G</mi><mrow><mi>α</mi><mi>β</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>8</mn><mi>π</mi><mi>G</mi></mrow><mrow><msup><mi>c</mi><mn>4</mn></msup></mrow></mfrac><msub><mi>T</mi><mrow><mi>α</mi><mi>β</mi></mrow></msub></mrow></math>
General Relativity
General Relativity

Schrödinger Equation

$$i \hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat H \Psi(\mathbf{r},t)$$

i \hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat H \Psi(\mathbf{r},t)
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>i</mi><mi>ℏ</mi><mfrac><mrow><mo>∂</mo></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mi>Ψ</mi><mo stretchy="false">(</mo><mi>𝐫</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mover><mi>H</mi><mo stretchy="false">^</mo></mover><mi>Ψ</mi><mo stretchy="false">(</mo><mi>𝐫</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></math>
Schrödinger Equation
Schrödinger Equation

Mass-Energy Equivalence

$$E = mc^2$$

E = mc^2
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>E</mi><mo>=</mo><mi>m</mi><msup><mi>c</mi><mn>2</mn></msup></mrow></math>
Mass-Energy Equivalence
Mass-Energy Equivalence

Rydberg Constant

$$R_\infty = \frac{m_e e^4}{8 \epsilon_0^2 h^3 c}$$

R_\infty = \frac{m_e e^4}{8 \epsilon_0^2 h^3 c}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>R</mi><mo>∞</mo></msub><mo>=</mo><mfrac><mrow><msub><mi>m</mi><mi>e</mi></msub><msup><mi>e</mi><mn>4</mn></msup></mrow><mrow><mn>8</mn><msubsup><mi>ϵ</mi><mn>0</mn><mn>2</mn></msubsup><msup><mi>h</mi><mn>3</mn></msup><mi>c</mi></mrow></mfrac></mrow></math>
Rydberg Constant
Rydberg Constant

Bohr radius

$$a_0 = \frac{4 \pi \epsilon_0 \hbar^2}{m_e e^2}$$

a_0 = \frac{4 \pi \epsilon_0 \hbar^2}{m_e e^2}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msub><mi>a</mi><mn>0</mn></msub><mo>=</mo><mfrac><mrow><mn>4</mn><mi>π</mi><msub><mi>ϵ</mi><mn>0</mn></msub><msup><mi>ℏ</mi><mn>2</mn></msup></mrow><mrow><msub><mi>m</mi><mi>e</mi></msub><msup><mi>e</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
Bohr radius
Bohr radius

Planck Relation

$$E = hv = \hbar\omega$$

E = hv = \hbar\omega
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>E</mi><mo>=</mo><mi>h</mi><mi>v</mi><mo>=</mo><mi>ℏ</mi><mi>ω</mi></mrow></math>
Planck Relation
Planck Relation

de Broglie Relation

$$p = \hbar k$$

p = \hbar k
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>p</mi><mo>=</mo><mi>ℏ</mi><mi>k</mi></mrow></math>
de Broglie Relation
de Broglie Relation

Planck's Law

$$B(v, T) = \frac{2 h v^3}{c^2} \frac{1}{\exp\left(\frac{hv}{k_B T}\right) - 1}$$

B(v, T) = \frac{2 h v^3}{c^2} \frac{1}{\exp\left(\frac{hv}{k_B T}\right) - 1}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>v</mi><mo>,</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi>h</mi><msup><mi>v</mi><mn>3</mn></msup></mrow><mrow><msup><mi>c</mi><mn>2</mn></msup></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mi>exp</mi><mrow><mo stretchy="true" fence="true" form="prefix">(</mo><mfrac><mrow><mi>h</mi><mi>v</mi></mrow><mrow><msub><mi>k</mi><mi>B</mi></msub><mi>T</mi></mrow></mfrac><mo stretchy="true" fence="true" form="postfix">)</mo></mrow><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math>
Planck's Law
Planck's Law